Characters changing speed: the Covariomorph model and its impact on phylogenetic trees

Basanta Khakurel^{1,2} and Sebastian Höhna^{1,2}

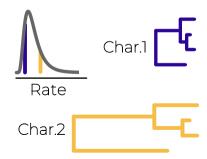
¹Department of Earth and Environmental Sciences, LMU Munich ²GeoBio-Center, LMU Munich

Evolution Meetings - June 23, 2025

Phylogenetic inference using morphology

- Morphological datasets are analyzed using the Mk model [Lewis, 2001].
- Extensions like ACRV (e.g., $+\Gamma$) allow for among-character rate variation.
- But they assume constant rates for characters across all lineages.
- ▶ Do all characters evolve at the same speed in all lineages?

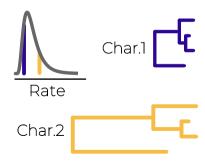
$$Q_{Mk} = \begin{pmatrix} * & \frac{1}{k-1} & \cdots & \frac{1}{k-1} \\ \frac{1}{k-1} & * & \cdots & \frac{1}{k-1} \\ \cdots & \cdots & \ddots & \cdots \\ \frac{1}{k-1} & \frac{1}{k-1} & \cdots & * \end{pmatrix}$$



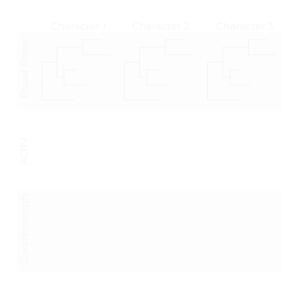
Phylogenetic inference using morphology

- ► Morphological datasets are analyzed using the Mk model [Lewis, 2001].
- Extensions like ACRV (e.g., $+\Gamma$) allow for among-character rate variation.
- ▶ But they assume constant rates for characters across all lineages.
- ▶ Do all characters evolve at the same speed in all lineages?

$$Q_{Mk} = \begin{pmatrix} * & \frac{1}{k-1} & \cdots & \frac{1}{k-1} \\ \frac{1}{k-1} & * & \cdots & \frac{1}{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{k-1} & \frac{1}{k-1} & \cdots & * \end{pmatrix}$$

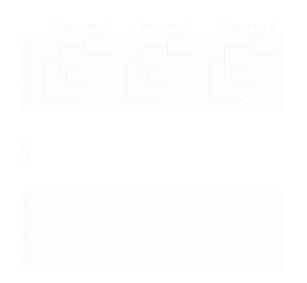


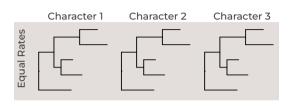
Phylogenetic inference using morphology



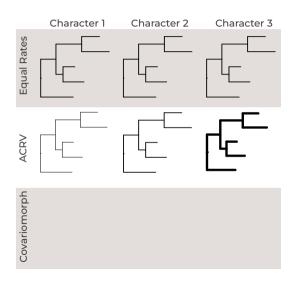
- ► Morphological datasets are analyzed using the Mk model [Lewis, 2001].
- Extensions like ACRV (e.g., $+\Gamma$) allow for among-character rate variation.
- But they assume constant rates for characters across all lineages.
- ▶ Do all characters evolve at the same speed in all lineages?

$$Q_{Mk} = \begin{pmatrix} * & \frac{1}{k-1} & \cdots & \frac{1}{k-1} \\ \frac{1}{k-1} & * & \cdots & \frac{1}{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{k-1} & \frac{1}{k-1} & \cdots & * \end{pmatrix}$$



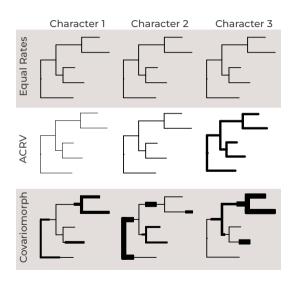

- Morphological data often defy traditional models.
- Partitioning approaches relax some assumptions but are limited.
- We need a model that captures heterotachy: changes in rate across both characters and lineages.

- Morphological data often defy traditional models.
- Partitioning approaches relax some assumptions but are limited.
- We need a model that captures heterotachy: changes in rate across both characters and lineages.



ACR\

Covariomorph

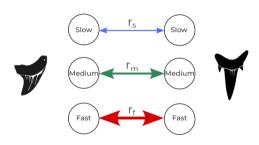

- Morphological data often defy traditional models.
- Partitioning approaches relax some assumptions but are limited.
- We need a model that captures heterotachy: changes in rate across both characters and lineages.

- Morphological data often defy traditional models.
- Partitioning approaches relax some assumptions but are limited.
- We need a model that captures heterotachy: changes in rate across both characters and lineages.

- Morphological data often defy traditional models.
- Partitioning approaches relax some assumptions but are limited.
- We need a model that captures heterotachy: changes in rate across both characters and lineages.

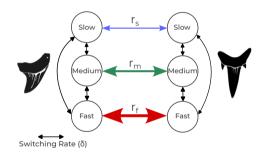
Covariomorph model

- Generalizes the covarion idea for morphology.
- Characters can switch between rate regimes (e.g., slow, medium, and fast).
- Unifies character-level and lineage-level rate variation in one framework.



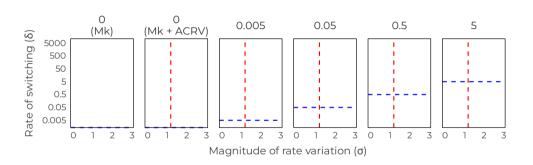
Covariomorph model

- Generalizes the covarion idea for morphology.
- Characters can switch between rate regimes (e.g., slow, medium, and fast).
- Unifies character-level and lineage-level rate variation in one framework.


Example for 3-rate category (m = 3).

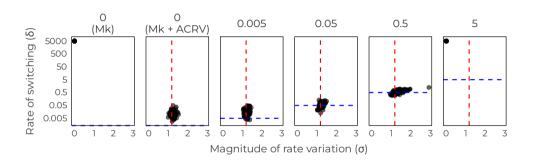
Covariomorph model

- Generalizes the covarion idea for morphology.
- Characters can switch between rate regimes (e.g., slow, medium, and fast).
- Unifies character-level and lineage-level rate variation in one framework.


$$\mathcal{Q}_{Cov} = egin{pmatrix} * & r_s & rac{\delta}{2} & 0 & rac{\delta}{2} & 0 \ r_s & * & 0 & rac{\delta}{2} & 0 & rac{\delta}{2} \ rac{\delta}{2} & 0 & * & r_m & rac{\delta}{2} & 0 \ 0 & rac{\delta}{2} & r_m & * & 0 & rac{\delta}{2} \ rac{\delta}{2} & 0 & rac{\delta}{2} & 0 & * & r_f \ 0 & rac{\delta}{2} & 0 & rac{\delta}{2} & r_f & * \end{pmatrix}$$

Example for 3-rate category (m = 3).

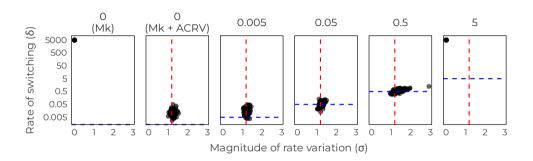
Simulation test



Simulations confirm that the Covariomorph model recovers both ratee

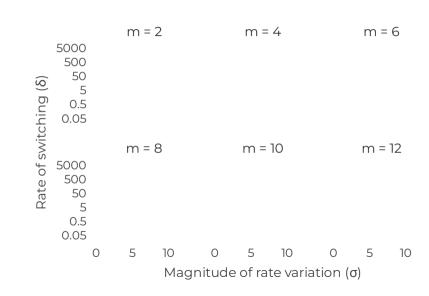
In limiting cases, Coveriomorph simplifies to Mk or ACRV.

Simulation test

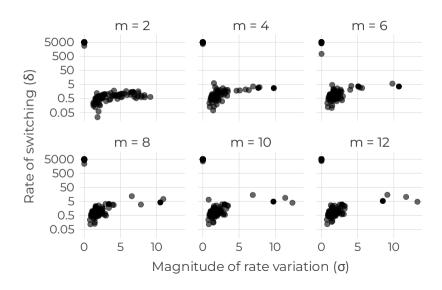


- Simulations confirm that the Covariomorph model recovers both rate variation (σ) and switching between rate regimes (δ).
- In limiting cases, Covariomorph simplifies to Mk or ACRW

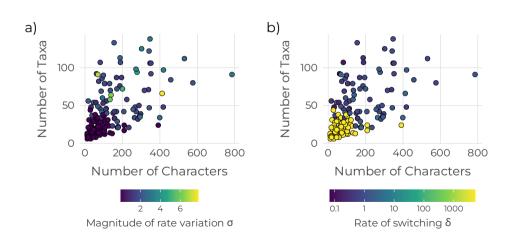
Simulation test



- Simulations confirm that the Covariomorph model recovers both rate variation (σ) and switching between rate regimes (δ).
- ▶ In limiting cases, Covariomorph simplifies to Mk or ACRV.


Empirical test - searching for heterotachy

Empirical test - searching for heterotachy



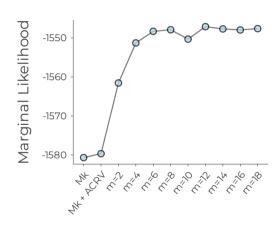
Association between dataset size and heterotachy

Larger datasets show more rate switching.

Focal data set of Rays

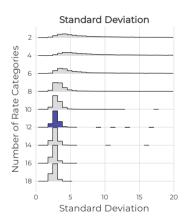
- ► Rays: 52 taxa, 124 characters [Marramà et al., 2023]
- Additional rate categories $m = \{14, 16, 18\}$
- Explored posterior distributions of δ , σ , and the tree length and topology.
- Also, model selection.

Focal data set of Rays

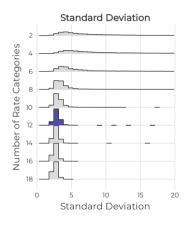


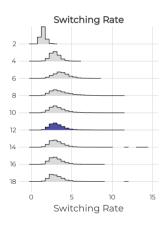
- ► Rays: 52 taxa, 124 characters [Marramà et al., 2023]
- Additional rate categories $m = \{14, 16, 18\}$
- Explored posterior distributions of δ , σ , and the tree length and topology.
- ► Also, model selection.

Focal data set of Rays

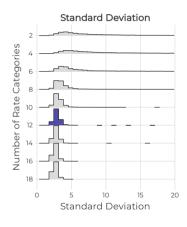


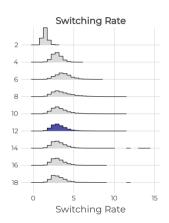
- ► Rays: 52 taxa, 124 characters [Marramà et al., 2023]
- Additional rate categories $m = \{14, 16, 18\}$
- Explored posterior distributions of δ , σ , and the tree length and topology.
- ► Also, model selection.

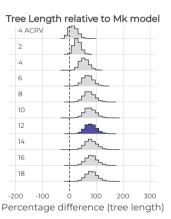

Parameter estimates



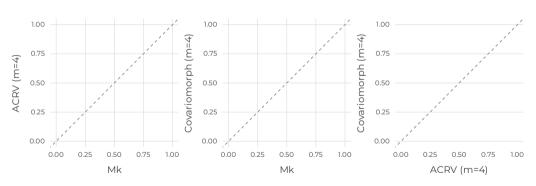
Parameter estimates

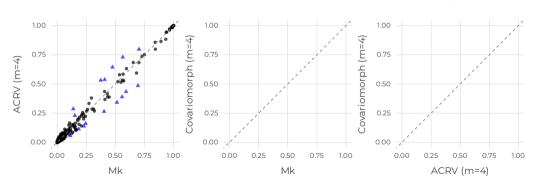


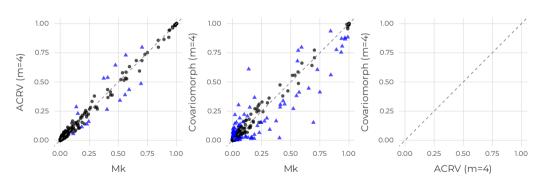


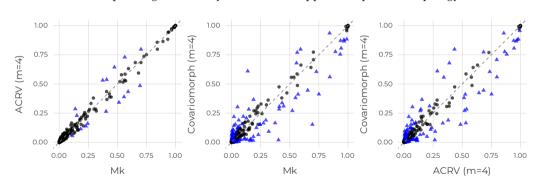


Parameter estimates









Take-home Messages

- ► Covariomorph detects heterotachy in morphology.
- Combines rate variation and switching between rate regimes.
- Iree topology and branch lengths are affected
- Implications for downstream studies like divergence time estimation, and diversification studies.

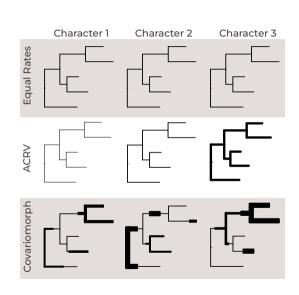
Take-home Messages

- Covariomorph detects heterotachy in morphology.
- Combines rate variation and switching between rate regimes.
- ► Tree topology and branch lengths are affected.

Implications for downstream studies like divergence time estimation, and

Take-home Messages

- Covariomorph detects heterotachy in morphology.
- Combines rate variation and switching between rate regimes.
- ► Tree topology and branch lengths are affected.
- Implications for downstream studies like divergence time estimation, and diversification studies.


Thank you!

Preprint coming soon!

b.khakurel@lmu.de

